MATERI MEMOMORY

LANJUTAN DARI MATERI SEBELUM NYA YANG ADA DI VIDIO YOUTUBE

SMK PGRI 2 WONOGIRI
TEKNIK KOMPUTER JARINGAN
SISTEM KOMPUTER
DJANAN MURSITO LATIF S.Pd

Faktor *Read-Write* data pada *Cell* Memori

- 1. Sequential Access: diuraikan dalam bentuk unit data yang disebut record. Mode akses data dalam record harus dibuat dalam bentuk linier.
- 2. Direct Access: Mendukung proses shared read/write data. Tiap blok dan record data mempunyai unique address.
- 3. Random Access: Metode pencarian tidak bergantung pada urutan lokasi memori sebelumnya, secara acak.
- Associative Access: Pencarian data secara random berdasarkan isi data dalam tiap lokasi memori.

Kinerja dan Tipe Fisik Memori

Ditentukan oleh beberapa parameter:

- 1. Access Time: waktu yang diperlukan memori untuk melakukan operasi baca-tulis
- 2. Memory Cycle Time: Hasil penjumlahan access time dan waktu tambahan yang diperlukan transient agar hilang pada saluran sinyal
- 3. Transfer Rate: kecepatan transmisi data menuju memori.

Ada 2 model transfer rate:

- 1. Memori jenis RAM. Kecepatannya sama dengan 1/cycle time
- 2. Memori berjenis

$$T_N = T_A + \frac{N}{R}$$
 adalah

Memori berdasarkan Fisiknya

- 1. Memori semikonduktor: Menggunakan LSI (Large Scale Integration)/ VLSI (Very Large Scale Integration) dengan ribuan chip dipadatkan dalam cell tertentu.
- Memori Permukaan Magnetik: Data disimpan pada media yang membentuk pola magnet tertentu.

Memori berdasarkan Cara Penulisannya

- 1. Erasable: memungkinkan untuk dapat menghapus data yang ada di dalamnya.
- 2. Non-Erasable: tidak memungkinkan untuk dilakukan penghapusan data kecuali dengan menghancurkan unit-unit penyimpannya

Keandalan Memori

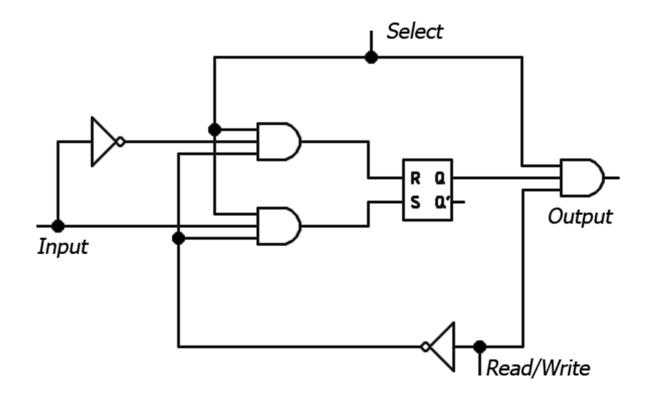
Keandalan sebuah memori harus memperhatikan:

- Harga memori yang murah
- Kapasitas yang semakin besar
- Peningkatan waktu akses
- Penurunan frekuensi akses emori oleh CPU

Spesifikasi Magnetic Storage

Tipe Memori	Teknologi	Ukuran	Waktu
Cache memory	Semikonduktor RAM	128-512 KB	10 ns
Memori utama	Semikonduktor RAM	16 MB-4GB	50 ns
Disk magnetik	Hard disk	Gigabyte	10 ms, 10 MB/detik
Disk optik	CD-ROM	Gigabyte	300 ms, 600 KB/detik
Pita magnetik	Tape	100 MB	Detik-menit, 10 MB/menit

Rangkaian Memori RAM


Kapasitas memori dalam menyediakan lokasi alamat memori dan penyimpanan data pada RAM/EPROM sebandng dengan jumlah pin (kaki) alamat (A0- An) yang dapat dihitung dengan rumus:

Contoh: RAM tipe 6116 memiliki pin (kaki) sebanyak 8, maka kapasitas RAM: 2^{n+1}

$$2^{n+1} = 2^{8+1} = 2^9 = 512$$

lokasi

Rangkaian sebuah *cell* memory

